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I. INTRODUCTION

This paper deals with the identification/approximation of a
linear system by poles and residues from a measuyred finite length
input~output record of the system. The objective of this paper

is threefold:

1) to illustrare that several different formulaticus for
characterizing the impulse response of a system yield the same set
of poles,

2) to show how different formulations regularize the ill-posed
systen identification problem, and

3) to demonstrate that relatively stable, consistent and re-
Jiable results in the identification of a system by poles and resi-
dues from a finite length input-output record can be achieved by
the pencil-of~functions methed.

Recognition that different formulations yield the same poles
is not widely appreciated. In this paper it is shown that form-
lations based upon different agsumptions result in identical sets
of analysis equations. For example, it is not at all obvious that
Prony's method (as derived by most numerical analysis formultions)

may be interpreted in terms of predicting each value of data and

s i,




therefore, is a form of digital Wiemer filter. Markel [1] and Markel
and Gray [2] did recognize the fact that identical analysis equations
can ba obtained by several different techniques.

In our discussion of the rariocus approaches, only references
which are directly relevant are noted. No attempt has been made
to cite the earliest sources. In many cases, additional references
may be found in papers mentioned.

The problem of interest is to identify/approximate the transfer
function of a system by its poles and residues when the noise contaminated
input and output are specified. The signal and noise are comnsidered to
be statiomary processes. When time limited signals are involved,
the problem is converted to an equivalent stationary problem by con-
volving the time limited signal with white noise of unit power {3].

In the second section the classical method for extracting the signal
from noise is discussed. This is the Wiemer-Kolmogoroff theory (4].
The digital form of the Wiener-Hopf equation is derived. Topics

associated with Wienmer filters are also presented. They include in-
verse filter design, linear prediction, predictive deconvelution (or

spiking) filter design, recursive filter design and Kalman filtering.

1 J.D. Markel, "Formant Trajectory Estimation from a Linear Least-Square
Inverse Filter Forrmulatiom,” SCRL-Momograph 7, Speech Communications
Research Laboratory, Inc., Santa Barbara, October 1971.

2 J.D. Markel and A.H. Gray, "Linear Prediction of Speech,"” Springer-
Verlag: Berlin. )

3.E.A. Robinson and 5. Traital, 'Principles of Digital Wiener Filtering,"
Geophysical Prospecting, September 1967, pp. 311-333,

4 N. Levinson, "The Wiener RMS Error Criterion in Filter Design and
Prediction,” Journal of Mathematics and Physics, 1947 V. 15, pp.
261~-278,
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Both the popularly known covariance and autocorrelation methods are
derived Irom the Wiener filter theorv.

Iz the third section the various well-posed stochastic exten-
sions of an ill-posed svstem identification/approximation problem
are described. They include the maximum likelihood estimation
theory, the minimum predictor error variance and the maximum entropy
spectral analysis. It is demonstrated that identical analysis
equations for parametric modeling of the system can be obtained.

The fourth section provides Pronv's method in various forms.
In particular, when a semi-least squares approach is applied to Pronv's
method, both the autocorrelation and the covariance method appear
as special cases. Thus it is also a form of a digital Wienmer filrer.

The second objective of this paper is discussed in the £ifth
section. This section discusses the various concepts »2f ill-posed
and well-posed problems in system identification. It is shown how
the different techniques regularize the {ll-posed system identifica-
tion problem by introducing further limitations on the solution.
Finally, it is shown how the pencil-of-functions method - radically
differs from the other formulatioms.

Finally, the third objective is demonstrated in section VI where
results are presented to demonstrate the claim that relatively stable,
reliable and consistent results are obtained for the location of the

poles by the pencil-~of-function method.




Ii. WIENER FILTER THEORY

Kolmogoroif (1942) and Wiener (1943) were the first to present
a unified theory on extrapolation, interpolation and smoothing of
stationary time series. The linear filter which performs the desired
task is obtained by the solution of an integral equation knowm as the
Wiener-Hopf equation [4]. For sampled data systems, the incegral
form of the Wiener-Hopf equation reduces to a finite sum. The present
treatment describes how Wiener's concepts can be applied to the identi-
fication/approximation of linear systems. The basic model for this
process consists of an input signal, a desired output signal and an
actual output signal. If one_minimizes the mean-squared error between
the desired output signal and the actual output signal, it becomes
possible to solve for the optimm system commonly known as the "Wiener"
£ilter. The fundamental assumption underlying the procedure is that
all processes are stationary.

A stationary time series is one whose statistical properties
are time invariant. In particular, the statistics of the time series
are independent of time. By definition, a stationary time series
must be of infinite duration. However, in an actual experiment, we
observe a times series over a finite interval. In order to apply the
concepts of Wiener filtering, the finite length time series is convolved
with a white noise series of unit power, to yield a stationary time series

[3]. Moreover, in actual measurements only one waveform is often available

Mt amem oo




for computing various statistics. Thus ensemble averages are frequently

evaluated by means of appropriate time averages. This is valid omly
when the random processes are ergodic.

The concept of Wiener filrering is well known but is included
here for completeness. The fundamental elements of digital Wiemer

filtering are summarized in Figure 1 for the sampled data problem.

Sampled Data Filter Actual
Input o ft Output
x v
c -
forfysees H ¢

t =0,1,..., K=1

Desired Output Signal

d

t = 0,1,2,...,K=2

Figure 1. Principles cf Wiener Filtering.

Given the input sequence x, and a desired output sequence dt’ the problenm
is to find the linear filter coefficients ft’ whose output sequence

x, * ft [* denotes convolution] yvields a minimum mean-squared error
estimate of dt' If E {-} denotes the expected value, then the error

2.
I = E{(dt - yt) } (2.1)

is to be minimized.

In this case an M-length filter f: = {fo,fl, ""fM-l} converts,

in a least error energy,sense a K-length input X, = {XO’xl""’szl}

i iam
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into a K+M-1 length sequence y, which approximates the desirec secuence

= - .00 T t is obtained as
dt 1d0, dl’ , dK+M—2 The actual output is obtained
y: = { }'O’yl: LI ] qu_M_z:'

M_—_l

=
- .F-O . -

The problem of making the actual output v, as close as possible to the
desired output dt can be interpreted in terms of minimizing the error energy

= 2{(d, - } f.x___)"i. 2.3)
£ = T

I=©tc@d =-v.)
t t
The error is minimized by evaluating the partial derivatives of I with

respect to f_ and equating them to zero. This results in a set of

equations

a1 ) M-1
el Et2(d, - Z fot-T) (-x
3 =0

)}

t=3

M-1

= - } o+ Yf { 3
ZE{dtxt_j, 2 £ Elx _ox )

=0 |, for § = 0,1,2, ...,M-1 (2.4)

The unknown filter coefficients are obtained by solving the fcllowing

set of simultaneous equations.

for j = 0,1, ..., M=1 (2.5)

In order to solve the above equations, it is necessary to compute

the expected values in Equation (2.5). By assuming that the ensemble




averages can be evaluated in terms of time averages, one obtains 73!

K-1 R
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(in the covariance method)

$157
K oo =7t
1 K-!1-3i-1 A
ol o R 2.7)
{(in the autocorrelarion method)
Similarly
. LA K-l
Bdx, ! "o cﬁn 8Xoy .
(in the covariance method)
R=1+M
22 tzo 4%, (2.9)

(in the autocorrelation method)

It is important to stress that the terms 'covariance'" and "autocorre-
larion" are not based upon the standard usage of the terms as occur
in the theory of stochastic processes. Rather, we follow rthe usage
which is quite prevalent in the speech processing literature [5].
following discussion is intended to clarify their interpretation.
It is clear that the covariance definition given by (2.6) vield

an unbiased estimate since

5 J. Makhoul, "Linear Prediction: A Tutorial Review,'" Proc. IEEE,
Vol. 63, No. 4, April 1975, pp. 361=580.
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Ere’ : T = E] : )
;ku‘xw-'kr—ﬂ _L}\ - M - )"’_'-Xu_-‘
d t=j Moo TS
. K-1
P - -
=7 X, X .o= Ex_ _x .
- M - ~T7t=] t~T7t)
=M

On the other nancd, the autocorrelation definition given by (2.7)

results in a biased estimare since ;

, \ K=~14M 1
E[E{x_ _x .}] = E[= h X .
t=T t-j] K £20 t=T :-JJ
L R-i7-j -1 S
- = B , Tl - ——diygs : (
K t=0 E‘xtxt+fr-jf’ [ K ]E‘X:-Tx:-j"

Since (T-3}) < M, it is interesting to mote that the bias is negligible
when M (the order of the filter) is much less than K. The bias is
significant, however, when K is only slightly larger than M. This
explains why a large number of data points (K >> M) is necessarv for
unbiased speczral estimation when using the autocorrelation function

to obtain the power spectral density.

Because the covariance method gives an unbiased estimate, it
might be assumed that it is a better estimate. However, the biased
estimate provided by the autocorrelation method is often preferable.

As an example consider the zero mean four data point sequence (4, -2,

-1, =1) and M = 2. Using the unbiased estimator, the expected values %

' = ' = 1 5§ ' = - ' = - i
are C00 1, C10 1.5, C20 1, C30 2. In contrast, the biased |

estimator results in r(o) = 3.3, r<l) = -1,25, r(z) = -0,5, r(3) = 1.0, ,

Note that C!. is less than C!

00 10 whereas r(o) is guaranteed to be greater f

[
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than ¢ for = > Q.

Continuing with our development, the discreze Wiener-Hopf egque-
zion presented in 1.3 can be writtern in the following mazrix form

for the covariance me:hod

i 1 0 I b rn N

et it ™ Pyl (2.10)
where [C<j] is a square marrix whose elements are given as

K-1
Coo = - L T 2.10)
~a =M hd -
[F,] is a column matrix consisting of the M unknown filter coefficients
{ g

h

grfyr ey, and [Djl is a column matrix whose elements are given
- E

bv

= 7 4 2.12
Dj Iu a:xt_j (2.12)

For the autocorrelatiorn method, the unknown filter coefficients are

obtained from the solution of the marrix equation

(R,

r - .

Mx1

where [R;i_j;] is a square matrix whose elements are given as
' K1+ R-1=]i-3!
R . o= ) % x - x t_ .
I | - - - el - 2. )
=3} oy Tt=iTt-d =0 t t+ii-j] (2.14)

and [Dj] is a column matrix defimed by (12).

Interestingly, most of the formulations for the solution of an
unknown linear filter lead to analysis equatiomns which can be formu-
lated either in terms of the autocorrelation matrix equatiomns (2.13)

or in terms of the covariance matrix equatioms (2.10).

13




It is important o note that the Wiener filrer is not alwavs
realizaple as a causal rational function (irn terms of poles and zeros).
As a result, the Wiener filter is, in general, an infinire order filrer.
Wnen the order of the filter is specified a priori, the resulting £il-

ter mav no longer be optimum.

Various Zorms of the Wiener filrer have appeared under different
names and have been used in various geophysical, speech processing,
and digital signal processing applicatiomns. Next, various modifica-

tions of the Wiener filter are presented.

2.1, Inverse Filter Formulation
The inverse filter attempts to transform the input signal into
an impulse [6]. Assume that the input sequemce x, is transformed to

an impulse of area ¢ by an all-zero filzer of the form

M-1 _
F(z) = ] £z, withf =1 (2.15)
i=(
In terms of Figure 1, the desired waveform dt is an impulse of area C.
It follows that the coefficients of the filter should be chosen such
that
M~1
Z f_x -Ué (.2vl6)

~=( T =T t

where ét = ] for t = 0 and zero otherwise, Multiplication of both

6 J.D, Markel, "Digital Inverse Filtering - A New Tool for Formant
Trajectory Estimation,” IEEE Trans. on Audio and Electroacoustics,
Vol., AU-18, No. 2, June 1970, pp. 137-141.
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sides by x . and summing t from k to K-l1+%, ome obtains

t-j
Ml  K=142 0, k>0
1 f,‘["{k Xe Kool " (2.17)
’ - x ., k=20
-3

ince x_j is zero for j > 0, the unknown coefficients . for 7 = 1,2,

vee.s, M~1 are obtained from the solution of the following equations

M:l K:l+2
Lof L ox _x _1=0 (2.18)
T=) =k )

for 3 = 1,2, ..., M-l.
For k = M and 1 = 0, the above equations reduce to that of the covariance

equations as in (2.10). This is because

R-1

D, = , &x _, =0.
i oM t7e-3 (2.19)

For k = 0 and % = M, equation (2.18) reduces to that of the auto-
correlation equations. If the input signal is approximated br¥ an all-
pole model the poles of the input signal are obtained from the zeros

of F(z) i.e. from the solution of the polynomial equaticus
M-1

L
T™=0
In particular, if (z.l)i is the ith root of the above equation (2.20),

then the 1ith pole is equal to ﬁn[(z-l) 1.

i

2.2 Linear Prediction
The term "linear Prediction' was f£irst used by Wiener in his
classic work on prediction of stationary time series. Since its publi-

cation, it has found wide application in the determimation of all-pole

15




models for the processing of speech signals [5].
The basic philosophyv here is to take a part of the sampled wave-
? form (say the first M-l points from K data points) and predicc che
next data point on the waveform by proper choice of the prediczor co-

efficients a,. The linear predictor of step size one predicts the

Mth data point of the waveform when a (M~1) order predicror filter is

chosen. In the time domain, the predicted sample iM is given by

M§l
X, == ) a .
* im1 11

where (-al,-az,-a "-aM~l) are the predictor coefficients. Assuming

3o
the signal spectrum is to be modelled by an all-pole model, the co~-

efficients ai are the negative of the values of fi preseated in (2.15). A

(M-1) order linear predictor thus requires a linear combination of the

previous (M-1) samples. The error is then g;ven by
M-1

&M'%ﬁxn'-izlaixn.i*xx
M=1
- - Z aixM—i with ao = -] (2.21)

i=0
When (K-1+%) different data points are predicted, the total squared

error is defined by

R=-1+2 K=1+2 M-1

M-1 M-1 K=142
) 120 jZO 05 L Fereny)
Ml M-1 RK=1+£
- 1§o jzo fifj{tzk LI S (2.22)

Minimization of I, with respect to the set of the filter coefficients

leads to a set of simultaneous equations givenm by

16
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M-l K15
T e T " S
DR X X L0 0 (2.23)
120 T emk T ET
for j =1, 2, ..., M -1, from which the upknown f£ilter coefficients

£ are obtained. When k = M and £ = 0O, this amounts to minimjzacion
of the error only over data points of the waveform from M to K - 1.
When k = 0 and 2 = M, this implies minimiration over the entire wave-
form. Equations (2.23) are idemtical to the set of equations (2.19)

obtained in the case of the inverse filter formulation in the previous

section.

Linear prediction is thus equivalent to an all-pole model for
the spectrum of the input X, - The poles for this model are again

obtained from the solution of the polynomial equation

Me1
I g2t 0.

i=0
Thus if X, represents the measured impulse response of the

system, the set of poles obtained by linear prediction can be interpreted

S0 as to parameterize the system in terms of an all-pole model.

2.3 Predictive Deconmvolution or Spiking Filter Design

The general linear filtering problem involves the input X, the
impulse response ht and the output Vet When .t is desirable to evalu-
ate ht given x, and Yoo the problem is referred to as deconvolution.
In this sense the inverse filter problem discussed in section 2.1 is
a deconvolution problem. Predictive deconvolution refers to the

case in which the output yt is assumed to be a delayed impulse

17




such that

M:l
£ x = 5¢ . (2.24)

Ll T r=T -1
=0 T =0+l

The unknown filter coefiicients {T can be pursued in a manner anala-
gous to the inverse filter approach by assuming the input to be re-
presented as an all-pole model. However, we prefer to show that the
filter coefficients can also be determined by interpreting the prob-
lem as a prediction problem. It is in this sense that the term pre-
dictive deconvolution is used {7].

Introduce the change of variables t - 0+l = § in equation (2.24).

The resulting equation is

M=1
) - M
1 E% paag® g (2.25)

Next, assume the filter coefficients to be givem by

a-1 zeros

(-1,0,0, ...,0,-31,—a2, vees -aM-1> (2.26)

The upper limit on the summation is now givem by M + a - 2, Equation

(2.25) can now be wrigten as

T T
x + fx = x - ax
t+a-1 =1 T t4a-t-~1 t+a~1l =1 T t=T
= ?ét 2.27)

If the estimate of X toml is agsumed to be given by Xebgel’ then

M-1
% .- 5 ax (2.28)
*r+a-1 ey T EeT ’

and cét can be interpreted as the error of the estimate.

7 R.L. Peacock and S. Treital, "Predictive Deconvolution: Theory and
Practice," Geophysics, Vol. 34, No. 2, April 1969, pp. 133-169.
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If the total squared error is minimized as was done for the
linear prediction approach in section 2.2, a set of equations is ob-
tained for the filrer coefficiemts. Vhen a = 1, these equations re-

duce to the same equations as were obrtained in (2.23)

2.4 Recursive Filter Design
Recursive filters are often used in digital filter design [8~12].
With respect to Fig. 1, the spectral estimation problem is now posed
in the following manner. Assume the filter input is the impulse ét.
Let the filter impulse response be determined so as to approximate
the data sequence in a minimum mean squared error semse. If x

t

is the input to the filter and Ve is the output, then they are

related by
MEI Lgl
ay = ) bx _
k=0 k/t-k =0 r't-r

Application of the z-transform to both sides yields

8 A. Oppenheim and R. Shaefer, Digital Signal Processing. Englewood
Cliffs, NJ: Prentice Hall, 1975.

9 J.L. Shanks, "Recursion Filter for Digital Processing,” Geophysics,
Vol. XXXII, No. 1, February 1967, pp. 33-51.

10 D.L. Fletcher and C.N. Weygandt, "A Digital Method of Tramsfer Func-
tion Calculation," IEEE Trans. on Circuit Theory, Jan. 1971, pp. 185-187,

11 C.S. Burrus and T.W. Parks, '"Time Domain Design of Recursive Digital
Filters," IEEE Trans. on Audio and Electroacoustics, Vol. AU-18,
No. 2, June 1570, pp. 137-141,

12 S. Treital and E.A. Robinson, "The Design of High Resolution Digital
Filters," IEEE Trans, on Geoscience Electromnics, Vol. GE-4, No. 1,
June 1966, pp. 25~38.
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M:l - L:l -r
L acz kY(z) = [ bz X(z)
k=0 =0

-1 -
or T bz T

Y(z) =0 °  _ B(z)
X(2) T M1 A, (2.29)

-
o ¥

P(z) =

Therefore, a recursive filter has a transfer function which is
expressed as a ratio of two polynomials of the z-transform variable.
The cobjective here is to synthesize the filter from the given impulse
response of the system. It is important to note that, unlike the
previous three types of filters, this is not an all-pole filter but
a pole-zero model. In other words, given some desired filrer operator
D(z) (which is the transfer function of a desired system having the

impulse response dt)’ we require the polynomials A(z) and B(z) of

the filter
« B(Z)
F(2) ING)) (2.30)
such that

F(2) R D(z) = dg + dy2 0 + dpz 2 4 Lo+ dp it (2.31)

A technique for determining A(z) and B(z) is outlined next.

-1 -2 =)+1
A(z) =1 + alz + a,2 + ...+ aM-lz (2.32)

and

2

, -1 - ~L+1
B(z) = bO + blz + bzz + .. + bL-lz

(2.33)

where M and L are arbitrary numbers which fix the number of poles
and zeros respectively for the filter. Also divide B(z) by a(z)

S0 as to obtain the infinite series

F(z) = £ + £, 214 £, 2.

Since F(z) A(z) = B(z), it follows that

20




- -’ -
F(z){ 1+ a, z " a, z -+ ... &y 2 el }
- -1 -2 . -L+l
b0+blz +5b,2 +...¢-DL_lz

Since multiplication of z-transforms is equivalent to convolution of
the discrete time series, the series of bt coefficients is equal to

the convolution of the ft coefficients with the a, coeffcients. Or

equivalently,
M=1

= )
bt j:U ajft-j'

By assumption, a0 = 1, Therefore,

M-1
ft = bt - Z a.ft_.
ymy Jt7d

As bt = (0 for t > 1L ‘from equation (2.33)), one may write

ey »  Pore>1l. (2.34)

M=1
ft = - Z a

=1
By assuming the approximation in (2.31) is valid, the coefficients
ft approximate'the coefficients dt for t > L. Equation (2.34) may

then be approximated by

M-1
de == ] 354
j~1
fort=L+1,L+2, ..., K=1 (2.35)

The error in (2.35) is given by

M-1
e = dt + Z aj d
=1

M-1
= Z a, d ; since a

5 Sty
3=0

for t = +1,L+2, ..., K=-1 (2.36)
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The ‘j coefficients are chosen in such a way that the mean-squared
error is minimized., In particular,

k—l M-l

[§8)

[
r=i+1 e=il i= R Ye-3
is minimized. By differentiating I of equation (2.37) with respect tc
aj and equating the derivatives to zero, a set of simultaneous equa-
tions is oﬁtained. They are given by
M=1

a [ Z dt -3%:- k

= 0 (2.38)
j=0 3 pal+l

for k = 1,2, ...,M-1.

For a realizable filter the numerator polynomial is generally omne
degree lower than the denominator polynomial (if the poles are simple).
Thus

L+1s=M,

‘Hence, (2.38) reduces to

M-1  R-1
jzo aj[tzM d,_gdem) = 0 (2.39)

which is equivalent to the covariance equations as givem by (2.10). The
right side of (2.10) is zero because
R=1

D, = ] & . =0 forj =1, 2, ..., M-l

3 ey td
The poles for the filter are then obtained by the solution of the poly-
nomial equation

M-1
I az =o0.
i=0 *
It was shown previously that the inverse filter, assuming an

all-pole model for the signal spectrum, is also equivalent to (2.10).

We conclude therefore that the poles for an all-pole model correspond

to the identical set of poles for a pole zero model for the




same order filter.
Next the residues at the poles (or equivalently, the numerator

polynomial) can be obtained by minimizing the mean-squared error

ol

-

. Al 3
iven by A{ft -d. .
t
It 1s interesting to note that when the numerator polynomial is
realized directly in the form presented in (2.33), the problem re-
duces to the case of the Pade approximation [13). Machematically,
Pade approximation results in an approximation of D(z) by F(z) such
that the seminorm
1 1 .
Ip(z) - F){f = [p@) - FQ| + [D7@) - F ()]

L+M=-1
L4M=-1 F (1) ‘

+ oo+ |D 1 - (2.40)

is made zero. Here Dk(l) represent the k th derivarive of D(2) evalu-

ated on the unit circle.

2.5 Kalman Filter Theory

Underlying Wiener filter design is the so-called Wienmer~Hopf integral
equation, its solution through spectral factorization, and the practi-
cal problem of synthesizing the theoretically optimal filter from its
impulse response. The normal Wiener filter is derived from the Weiner-
Hopf equation and in general this equation can be solved only in the
steady state, i.e. when the observation interval is semi-infinite. The

contribution of Kalman was recognition of the fact that the integral

13 R.N. McDonough, "Representarion and Analysis of Signals, Part XV -
Matched Exponents for the Representatiom of Signals," Johns Hopkins
University, April 1963,
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equation could be converted into a nonlinear differencial equation
whose solutiom contains all the necessary information for design of
the optimal filter. The problem of spectral factorization in the
{/iener filter is analagous to the requiremen:t for solving M(M+1)/2
coupled nonlinear algebraic equations in the M-order Kalman filter.
These equations can be solved numerically for transient tvpe problems,
where data is available only for a finite interval. This, in general,
results in the Kalman filters being time-variant . However, ir the
steadv-state the Kalman filter reduces to the time invariant Wiemer
filter [14]. The preseontation by Sorensen [l15) expresses the results
of Kalman filter theory in a way that makes this comparison easier.
The problem involves estimating a signal{sn},from measured data

{do, dl, vy dK-l}' If the estimate is computed as a linear combi-
nation of the dn, then

. M-1

& = 120 Ad, . 2.41)
The M coefficients Ai are chosen in such a way that the mean-squared

error,

)T(s -5)1, (2.42)

I=Ele, = 25) (& - 5

n
is minimized. Here T denotes the transpose of the row vector an - §n).
This criterion is satisfied when the error in the estimate En is

orthogonal to the measured data, or

E((s_ - §)d.] =0, for i = 0,1,..., M-1 (2.43)

14 A. Gelb, "Applied Optimal Estimation," MIT Press, 1974,.

15 BH.W. Sorensen, 'Least-squares Estimation from Gauss to Kalman,"
IEEE Spectrum, July 1970, pp. 63-68.
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Expressed in a different way

However, the matrix inversion that is required becomes computatiopally
impractical when M is large. Wiener and Kolmogoroff{ assumed an infinite
amount of data (that is, the lower limit of the summation is ~® rather
than zero). Eq (2.43) is then the discrete form of the Wiener-Hopf

equation which was solved using spectral factorizatiosm.

The basic difference between Wiener-Kolmogoroff theory and the
Ralman filter theory is how equation (2,44) is solved., In 1955 J.W.Follin
suggested a recursive approach to solve (2.44). It is clear (see reference
15. p. 65) that Follin's work provided a direct stimulus for the work of
Richard Bucy, which led to his subsequent c¢collaboration with Kalman in
the total development of the '"'state space" approack for obtaining the

£ilter equatiomns.

2.6 Summary
As outlined above all forms of the digital Wiemer filter lead
either to the covariance or the autocorrelation equatioms. It is

also interesting that the same set of poles is obtained whether one

models the signal as an all-pole model or as a pole-zero model.
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II. STOCHASTIC METHODS APPLIED TC

(a8
(s}

SYSTEM IDENTIFICATION

Three different stochastic methods used in specIral escimartion
are presented in this section. They are maximum likelihood estimatien,
minimum predictor error variance estimation, and maxlmum entropy
spectral analysis. All three models are considerec as all-pole models.
These methods have no relationship with discrete Wiener filtering
theory. The methods presented in this section start witk completely
different assumptions but finallv vield the iderrical set of either
covariance or autocorrelation equations which characterize the system
to be identified from the .measured impulse response.

In these methods it is assumed that the data samples are part
of a random process. The problem is to choose the parameters of the
system impluse response so as to make the probability of occurence of
the actual observation most likely. In other words, the svstem para-
meters are chosen in such a wayv that the probability density functior

defining the parameters is maximized.

3.1 Maximum Likelihood Estimation Theory

In this approach the measured impulse response of the system is
considered as a segment of a random process. It is further assumed
that the impulse response can be generated by passing an uncorrelated

noise sequence {et} through an all-pole model of the form




Nex: the random process te_. is assumed to be Gaussiarn with
2
zero mean and variance :e. Thus,

" H

E‘e =20 and E{e,e > = £ ¢~ 3.2 :

t RS iive (3.2) ;

As the measured impulse response L t =0, 1, ..., K-1 has beer :

r

assumed to be generated by passing the nolse sequence el through the
all-pole model, it folliows that

1

ToEx__,=e_. (3.3)

0o =

[Ys

From (3.2) and (3.3) it is clear that the sequence xt is Gaussian witt

Elx =g, (3.4)

i-j -

|
j
zero mean and a cross—correlation defined by
x
i j]
!
1

This correlation sequence gi 3 would then be a function of the svstem

paramecters f , { = 0, %, ..., M1 and oz. Since x_ is Gaussian, a
-

Gaussian multivariate probability demsity function is defined for the 1
1
sequence of random variables XpsXqs ceey Xp_q¢ The maximum likelihood i
|
{

theory assumes that the parameter values which make the measured ob-
servation of the impulse response most likely are the same values

which maximize the joint probability density function of x,, i = O,

i,
1, ..., K-1. This can be achieved by differentiating the density

. . . 2
function with each of the unknown variables, £ £ and ce

£
1Y T2 T TMel

and then setting the first partial derivative equal to zero. The
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(20

soluzions of cthe set of equactions tnen vield the values for zhe unknowr

paramerers. Iven though the procedure is conceptually simple, the se:
of equations becomes extremely nonlinear for M greater thar I and no
exact solutiomn for zhis problem exists [27.

However, Itakura and Saito [16,17] solved the maximum likelihood
problem bv making some additional assumptions. Tirst, the number of
data points K is made much greater than M, the order of the filrer
(i.e., K >> M), Second, the joint probavilicy demsity Zunction for

che sequence x is approximated bv

O’xl’x2’ cees Xy

- B ” 2‘K/2 . ) : -
PiXgsXyseeesXp o0 " [-wce] exp{-a/2c ] (3.3
where
K=14+M M1 2
= 3.6)
o Z;O [g) £;x,_,] (3.6)

It i§ interesting to note that O has the identical form of the error
defined by the autocorrelazion equations in linear prediction (see
equation (222}).

It has been shown ({16, 17) tnat the results obtained for the un-
known filter coefiicients fi are identical to (2,.13) which utilizes
the autocorrelation equations.

The corresponding equations for the covariance method are ob-
tained by defining a conditional density function for the probabilicy

density. This is achieved by treating the M data points x_., x

e ey

0’ l,

a1 as a set of deterministic initial conditions and the remaining

16 F, Itakura and S. Saito, "Analysis Svnthesis Telephony based on
Maximum Likelihood Method,' 6th International Congress on Acoustics,
Tokyvo, Japan, Aug. 21~28, 1968, C-5-5, pp. C~17-20. )

17 F, ltakura and S. Saito, "Extraction of Speech Parameters based upon
the Statistical Method," Proc, Speech Info. Process, Tohaku Universi:cy,
Sendai, Japan, 5.1, 5.12 (1971) (in Japanese).
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K~M data points as a ser of random variables. Under che above assump-
cions, the conditional probabilicy density Zunccion is approximatec as
17z, 21

Pt (i e e aXgy) (Rgoyseenny g) 2 =

(2wce2)'°-5(K‘“&xp[-a/zciJ (3.7)
where
a= T 0] £x ] (3.8)
t=M 4imQ - 7%

Again it is clear that ¢ hLas the same form as the error energy defined
for the covariance equations for the case of linear prediction (see
(2.22)). Maximization of the conditional probability density func-
tion is then achieved by maximizing pc with re.pect to the unknown

filrer coefficients fi and Gi. The get of equarions (see (2.10))

obtained in this case are identical to those of the covariance method.

3.2 Minimum Predictor Error Variance
In this merhod the data samples are not considered as a part of
a Gaussian process. In other words, the method remains the same as
before, i.e. the measured impulse response is generated by passing a
noise sequence {et} through an all-pole model [2]. It is assumed
that the error sequence is of zero mean and of variance given by
M M

E[ei] - 7 ) £,£y Elx

) (3.9)
i=0 j=0 *

X
t=-1i"t-~j

Next the process is assumed to be stationary so that the expectation '

in (3.9) can be expressed as




C e s g

T -

~—

X ]l =g 3.10)
E[xc_l e=3! T s (3.10)

and the error variance as

Ry

M

2 - " -
E[et] = I <

DL fiige . (3.11)
120 ym0 - 3 73

The problem is to determine the filter coefficients so as to minimize
the error variance.

An additional assumption is now made, Specifically, it is assumed
that the process is ergodic so that the ensemble average E may be

converted to a time average. Hence, the approximation

1 K-1
L
i3 K-M cmM t-1¢t~j
1
= Cij (3.12)
leads to the covariance equations (2.10) and the approximation
R-|i-j|-1
g, . mi T x x ,
i-j K =0 toe+ i~ |
= Tiy (3.13)

leads to the autocorrelatiocn equations (2.13). Hence, this method
vields a set of analysis equations identical to those for the dis-

crete Wiener filter.

3.3 Maximum Entropy Spectral Analysis
An important aspect of time series anmalysis is the computation

of the power spectral density which is primarily determined by the

second order statistics. In an actual experiment, the number of




data poinrs is always Zinire. Hence, for the problem of interest the
data length may nor be sufficient to obtain a specified degree of
frequency resolution. Also, given a finire number of K data points,
we can obtain at most approximations of the K autocorrelation func-
tions :O,vrl, ceey rK-l' In the previous autocorrelation formulations

the data has been assumed to be zero outside the known interval. 1In

some instances, this may be an unreasonable assumptior about the extension
of the data beyond the known interval. The question then arises as tc what
assumptions should be made about the data outside the finite sample

and what assumntion should be made about their second order statis-

tics (i.e. the autocorrelation), since they determine the power

spectral density.

Burg proposed an information theory approach to the problem. EHe
suggested [18] that the most reasonable choice of the unknown auto-
correlations is the one which adds no information or adds most
randomness or maximizes the entropy. He then proceeded to select the
power spectral density having the maximum entropy of all possible
spectra that agrees with the known values of the autocorrelation

function ri.

The information content of 2 random process is defined in terms

of a quantity called entropy and is mathematically expressed as

H= ~ Pin?P (3.14
§ 3 o 3 g )

where P, is the probability of the jth event of a random process.

3

18 J.P. Burg, '"Maximum Entropy Spectral Amalysis,' Ph.D. Thesis,
Stanford University, Palo Alto, Califormia 1975.




When the random variable takes on a continuum of values, the sum in

1 the definition of the entropy is replaced by an integral. Since

we are dealing wirh a time series Xgr Eps eees X 1o the probatility

is replaced by the joint probability demsity function p(xo,xl, ey xK-l)'

Thus
( .
H= - jp(xo,xl, ceerXy 1) Ln ~p(xo,xl, ceer Xp l;dV (3.15)

where dV is an element of volume in the space spanned by the random

variables. Burg then proceeded to adjoin a hypothetical variable X,

to the available estimates of the autocorrelation function Ty rl,
r2 and so on. We may then consider the joint probability density
available for the K data points and the adjoined xk as

P(XgsXys coes Xp_10%p) (3.16)

This probability density function has an entropy
H = -Jp(xo,xl,...,xK_l,x,K)SZ.n{p(xo,xl,..,xK_l,xK).}dV (3.17)

Burg chose as (3.16) that probability density function which has its

first K second order moments as ro,r cesy T and which under

1’ k-1’
the given constraint maximized (3.17). The obvious choice for the
probability density function in (3.16) is Gaussian since according

to Shannon and Weaver [19, 20] the Gaussian distribution results in

maximum entropy under a constant energy constraint. Thus

19 C.E. Shannon and W. Weaver, The Mathematical Theory of Communica~
tion. Urbana, Illinois: University of Illinois Press, 1962, pp. 56~57. )

20 R.N. McDonough, "Maximum-entropy spatial processing of array data,”
Geophysics, Vol. 39, No. 6, December 1974, pp. 843-851.
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expi~ X'{RK}—IX}
p(xo,xl, ...,xK_l,xK) = (3.18)
¢ ooy KAl 172
L(2m) -E-'de:[RK],

where X is the column vector of the X, the prime indicates the trans-

pose, and the matrix [RK] is given by

[RK] -1 . . .

TR« v s o s o s 0 s ... Ty (3.19)

The entropy can then be expressed as {19, 20]
1 R+l . .. . )
B = 7 Ln{ (2me) det[RK]J (3.20)

Now rK is to be chosen in such a way that B in (3.20) is maximized.
Hence the value of rK {s the one which maximizes det [RK].
In order for T, to constitute a proper set of autocorrelation

values, the matrix [RK] must be positive semi-definite [21]. More-

over, det [RK] is a quadratic function in r_. It follows that

K
maximizing det [RK] with respect to Ty yvields the value of Tx obtained
from the solution of the following equation
T Ty erer Tpoo
T ba T
dec | 2 1 =31 w0 (3.21)
. . ‘
Ty Tgaleee+ T3

21 A. Van den Bos, "Alternative Interpretation of Maximum Entropy
Spectral Analysis," IEEE Trams. on Information Theory, Vol., IT-17,
No. 4, 1971, pp. 493-494,
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A Discussion of Various Approaches to the Identification/Approximation Problem

TAPAN K. SARKAR, senior MeMBek. 1k, DONALD D. WEINER, MEMBER, IEEL.
JOSHUA NEBAT, ann VIJAY K. JAIN, SENIOR MEMBER, IELE

Abstraci—The identification/approximation of a linear system by
poles and residues from a ed finite length input-output record
of the system is discussed. The objective of this paper is to illustrute
that seversl different formulations for characterizing the impuise
response of a system yield the same set of poles.

I. INTRODUCTION

N RECENT years the singularity ¢xpansion method (SEM)

has been used very successfully to study transient phenom-
¢na in electromagnetic radiation and scattering problems.
With this approach, information is obtained about the electro-
magnetic structures frcm measared transient responses to
knowa inputs. The information leads to a characterization
of the impulse response of the electromagnetic system by a
sum of damped exponentials. It is desirable to know the
complex natural frequencies or poles with a high degree of
accuracy. The problem of exiraction of the poles from the
measured transient response data is reduced to a system ap-
proximation/identification problem.

This paper deals with the identificauon/approximation of
a linear system by poles and residues from a measured finite
length input-output record of the system. The objective of
this paper is to illustrate that several different formulations
for characterizing the impulse response of a system yield the
same set of poles.

Recognition that different formulations yield the same
poles is no\ widely appreciated. It is shown here that formula-
tions based upon different assumptions result in identical
sets of analysir equations. For example, it is not at all ob-
vious that Picny’s method (as derived by most numerical
analysis for.nulations) may be interpreted in terms of pre-
dicting each value of data and, therefore, is a form of digital
Wiener filter. Marke] [2; did recognize the fact that identical
analysis equations can be obtained by severa! different tech-
niques.

In our discussion of the various approaches, only references
which are directly relevant are noted. No attempt has been
made to cite the earliest sources. In many cases, additional
references may be found in papers mentioned.

The problem of interest is to identify/approximate the
transfer function of a system by its poles and residues when
the noisecontaminated input and output are specified. The
signal and noise are considered to be stationary processes.
When time-limited signals are involved, the problem is con-

Manuscript received May 14, 1980; revised February 3, 1981. This
work was supported in part by AFWL under Contract F33615-77-C-
2059 and by the Office of Naval Research under Contract NOOO14-79-
C0598.

T. Sarkar is with the Department of Electrical Engineering, Rochester
Institute of Technology, Rochester, NY 14623.

D. D. Weiner and J. Nebat are with the Department of Electrical
Engineering, Syracuse University, Syracuse, NY 13210.

V. K. Jain is with the Department of Electrical Engineering, Uni-
versity of South Florida, Tampa, FL 33620.

verted to an equivalent stationary problem by convolving
the time Limited signal with white noise of unit power [3].
In the second section the classical method for extracting the
signal from noise is discussed. This is the Wiener-Kolmogaroff
theory [4). The digital form of the Wiener-Hopf equation
is derived. Topics associated with Wiener filters are also
presented. They include inverse filter design. linear prediction,
predictive deconvolution (or spiking) filter design. recursive
filter design, and Kalman filtering. Both the popularly known
covariance and autocorrelation methods are derived from the
Wiener filter theory.

In the third section the various stochastic extensions are
described. They include the maximum likelihood estimation
theory, the minimum predictor error variance and the maxi-
mum entropy spectral analysis. It is demonstrated that iden-
tica] analysis equations for parametric modeling of the system
« -1 be obtained.

The fourth section provides Prony’s method in various
forms. In particular, when a semi-least-squares approach is
applied to Prony’s method, both the autocorrelation and the
covariance method appear as special cases. Thus, it is also
a form of a digital Wiener filter.

II. WIENER FILTER THEORY

Kolmogoroff in 1942 and Wiener in 1943 were the first
to present a unified theory on extrapolation, interpolation.
and smoothing of stationary time series. The linear filter
which performs the desired task is obtained by the solution
of an integral equation known as the Wiener-Hopf equation
[4]. For sampled data systems, the integral form of the
Wiener-Hopf equations reduces to a finite sum. The present
treatment describes how Wiener's concepts can be applied
to the identification/approximation of linear systems. The
basic model for this process consists of an input signal, a
desired output signal, and an actua) output signal. If one
minimizes the mean-squared error between the desired out-
put signal and the actual output signal, it becomes possible
to solve for the optimum system commonly known as the
“‘Wiener™ filter. The fundamental assumption underlying the
procedure is that all processes are stationary.

A stationary time series is one whose statistical properties
are time invariant. In particular, the statistics of the time
series are independent of time. By definition, a stationary
time series must be of infinite duration. However, in an
actual experiment, we observe a times series over a finite
interval. In order to apply the concepts of Wiener filtering,
the finite length time series is convolved with a white noise
series of unit power, to yield a stationary time series {3].
Moreover, in actual measurements only one waveform is
often available for computing various statistics. Thus ensemble
averages are frequently evaluated by means of appropriate
time averages. This is valid only when the random processes
are ergodic.

0018-926X/82/0100-0089500.75 © 1981 IEEE
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i ' d Sar _“ . :“’.’ T oo ] In order to solve the above equations, it is necessary to
awo e ota \ drar B ! e . . .
‘ oot —— \, e Output - compute the expected values in (5). By assuming that the
i " ] ok, e _J oo 1 ensemble averages can be evaluated in terms of time averages,

‘ Dasired Qutput Signat
dy

[——'

[

1= 012 ,K'M-ZV

Fig. 1. Principles of Wiener filtering.

Although the concept of Wiener filtering is well-known, it is
included here for completeness. The fundamental elements of
digital Wiener filtering are summarized in Fig. 1 for the sam-
pled data problem. Given the input sequence x, and a desired
output sequence d,, the problem is to find the linear filter
coefficients f,, whose output sequence x,s f, (the asterisk
denotes convolution) yields a minimum mean-squared error
estimate of d,. If E{+} denotes the expected value, then the
error

I1=E{(d;~y0?} (1)

is to be minimized.

In this case an Af-length filter f, = {fq, f1, ", fm_1} con-
verts, in a least-error energy sense, a K-length input x, =
{xg.xy. . xx_} intoaKk +M — 1 length sequence y, which
approximates the desired sequence d, = {dg.dy, ", dxsp_2}-
The actual output is obtained as

}'1={}’o.yl."‘-)’x¢M42}
M-1
=x,0f = foxt—rv 2
=0

The problem of making the actual output y, as close as pos-
sible to the desired output d, can be interpreted in terms of
minimizing the error “energy”’

M- 2
<dt° 2 fr"r—-r> ’ 3)
7=0

The error is minimized by evaluating the partial derivatives of
1 with respect to f, and equating them to zero. This results in
a set of equations

I=E{d,—y)*}=E

d ( Mz—l )
—=E{2ld,— fexoo g J(—xej)
d/l = T T
k M-
= —2E{dpx, )} +2 X frE{xs rxe_j}
=0
=0, forj=0.1,2," " M—1. (4)

The unknown filter coefficients are obtained by solving the
| following set of simultaneous equations. This is the discrete
Wiener-Hopf equation.

M 1
E [rE{xq_yxe_j} = E{dx,_j}
r=0

forj=0,1, -~ M—1. (5)

one obtains {3]

E{x,_x, ;} & Xe_1xp iR Gy (©)

K—M =M

(in the covariance method)

1 K_1+M
& — Xp_1X
= t—-1X1—j4
K &
1 K-jr—ji—1 N
== 2 XXgeiz_ji = T(r-)) (M
K =0

(in the autocorrelation method).

Similarly
E{d,x, }8—— dyx,_; (8)
[ Y] K—M o X1

(in the covariance method)

1 K—-1+M
é—- 2 dgx'._,' (9)
K o0

(in the autocorrelation method).

It is important to stress that the terms ‘‘covanance’ and
‘autocorrelation” are not based upon the standard usage of
the terms as occur in the theory of stochastic processes.
Rather, we follow the usage which is quite prevalent in the
speech processing literature [S]. The following discussion is
intended to clarify their interpretation.

It is clear that the covariance definition given by (6) yields
an unbiased estimate since

E[E{Xr-rxr-i}] éE[K—M =M

K-1
2 xt—rx:—i:]

K-1

1
=— Efx, _.x, ;
K_M:,_}’ v Xej)

=E{—"r—1xt-/}-

On the other hand, the autocorrelation definition given by
(7) results in a biased estimate since

1 K-1+M
E[E{x,_,x;.;}] BE p E X gXg_j

=0
1 K-lr—jl-1

= — E{x ‘.}
X r=zo X140

= [} _|T;i| ]E{x,_,x,_,}.

Since (r — j) < M, it is interesting to note that the bias is
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negligible when A (the order of the filter) is much less than
K. The bias is significant, however, when K is only slightly
larger than M. This explains why a large number of data
points (K » M) is necessary for unbiased spectral estimation
when using the autocorrelation function to obtain the power
spectral density. '

Because the covariance method gives an unbiased estimate,
it might be assumed that it is a better estimate. However, the
biased estimate provided by the autocorrelation method is
often preferabie. As an example consider the zero mean four
data point sequence (4, -2, -1, —1) and M = 2.0. Using the
unbiased estimator, the expected values are Coo' = 1.0,

Cyo' = 1.5. C39" = -1.0, C35' = -2.0. In contrast, the
biased estimator results in r(gy = 5.5, r(yy = -1.25, 15y =
-0.5. 73y = -1.0. Note that Cqq' is less than C,,' whereas

() is guaranteed to be greater than (1) for 1 > 0. Hence, the
autocorrelation method yields nonnegative power spectral
densities whereas the covariance method may not.

Continuing with our development, the discrete Wiener-
Hopf equation presented in (5) can be written in the follow-
ing matrix form for the covariance method:

(CiylmxarFilarxa = (D) ax) (10)

where [C,-,-l is a square matrix whose elements are given as

K-1
Cij= *eixe (1)
=M

[F;] is a column matrix consisting of the M unknown filter
coefficients fo. fy, -, fmy_y. and [D;] is a column matrix
whose elements are given by

K1
Dj= Y dix,_; (12)
=m

For the autocorrelation method, the unknown filter coef-
ficients are obtained from the solution of the matrix equation
[Ri-plmxm[Fidmx1 = [Dilmx (13)

where [R ;_; ] is a square matrix whose elements are given as

K-1+M K—1-1li-jl
Rip= 2 *xj= 2 gy (19)
=0 =0

: and [D;] is a column matrix defined by [12].

: Interestingly, most of the formulations for the solution of
an unknown linear filter lead to analysis equations which can
be formulated either in terms of the autocorrelation matrix
equations (13) or in terms of the covariance matrix equations
(10).

It is important to note that the Wiener filter is not always
realizable as a causal rational function (in terms of poles and
zeros). As a result, the Wiener filter is, in general, an infinite
order filter. When the order of the filter is specified a priori,
the resulting filter may no longer be optimum.

Various forms of the Wiener filter have appeared under dif-
ferent names and have been used in various geophysical,
speech processing, and digital signal processing applications.
Next, various modifications of the Wiener filter are presented.

A. Inverse Filter Formulation

The inverse filter attempts to transform the input signal
into an impulse [6]. Assume that the input sequence x, 1s
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transformed to an impulse of area ¢ by an all-zero filter
of the form

M
F@z) = E fiz7!, withf =1, (1%
=0

In terms of Fig. 1, the desired waveform d, is an impulse
of area o. It follows that the coefficients of the filter should
be chosen such that

M-}
fix_ . =06, (le)
=0

where 6, = 1 for 1 = 0 and zero otherwise. Multiplication of
both sides by xy_jand summing f from k to A ~ 1 + [, one
obtains

M-1 K-141

0 k>0

Ir x,_,x,_,} = (17)
1=20 r=2k ox_;, k=0

Since x ; is zero for j > 0, the unknown coefficients f, for

T =12, -, M — | are obtained from the solution of the

following equaticns:

M-1 K-1+1
> ff[ 2 x,_,x,_,-] =0 (18)
=0

=k

forj=1,2, - M - 1. Fork = Mand!=0, the above equa-
tions reduce to that of the covariance equations as in (10).
This is because

K-1
Dj= 2 8;x,;=0. 19)
=M

Fork = 0 and ! = M, (18) reduces to that of the autocor-
relation equations. If the input signal is approximated by an
all-pole model, the poles of the input signal are obtained from
the zeros of F(2), i.e., from the solution of the polynomial
equations

M-1
Y =0 (20)
=0
In particular, if (z~!); is the ith root of the above equation
(20), then the ith pole is equal to In [(z™1);].

B. Linear Prediction

The term “linear prediction” was first used by Wiener in
his classic work on prediction of stationary time series. Since
its publication, it has found wide application in the determina-
tion of all-pole models for the processing of speech signals
(s).

The basic philosophy here is to take a part of the sampled
waveform (say the first M — 1 points from K data points)
and predict the next data point on the waveform by proper
choice of the predictor coefficients a;. The linear predictor
of step size one predicts the Mth data point of the waveform
when a (M — 1) order predictor filter is chosen. In the time
domain, the predicted sample xpy is given by

M1
Xpg=— 2 axp
=1




’ ’ acum s ——E———
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where (—a,, —a,, —a3, -, —ap_ ;) are the predictor coef-
ficients. Assuming the signal spectrum is to be modeled by
an all-pole model, the coefficients g; are the negative of the
values of f; presented in (15). A (M — 1) order linear pre-
dictor thus requires a linear combination of the previous
(M — 1) samples. The error is then given by

em =Xy +xy
M-1
=- aixp— g+ xy
i=1
M-
=— E apxm_; with ag = —1. @n
i=0

When (K — 1 + 1) different data points are predicted, the total
squared error is defined by

X-141 K-1+l| M—1 2
I= E [{e]]? = E [ z aixx—t]
=k

=k L 0
M-1 M-1 K-1+1

= 2 a;a; Xp_iXt—j
i=0 j=0 =k
M-1M-1 K-1+1

= fif Xp_iXp_j| - 22)
=0 j=0 =k

Minimization of [, with respect to the set of the filter coef-
ficients leads to a set of simultaneous equations given by

2 i

M-1 lx-nl
=0

xr—lxr-,il =9 (23)
=k

forj=1,2,, M — 1, from which the unknown filter coef-
ficients f; are obtained. When k = M and [ = 0, this amounts
to minimization of the error only over data points of the
waveform from M to K — 1. When k = 0 and I = M, this
implies minimization over the entire waveform. Equation
(23) are identical to the set of equations (19) obtained in the
case of the inverse filter formulation in the previous section.

Linear prediction is, therefore, equivalent to an all-pole
model for the spectrum of the input x, The poles for this
model are again obtained from the solution of the polynomial
equation

M-
2 f[l_i=0.
i=0

Thus, if x, represents the measured impuise response of the
system, the set of poles obtained by linear prediction can be
interpreted so as to parameterize the system in terms of an
all-pole model.

C. Predictive Deconvolution or Spiking Filter Design

The general linear filtering problem involves the input
x,, the impulse response h, and the output y, When it is
desirable to evaluate k, given x, and y,, the problem is referred
to as deconvolution. In this sense the inverse filter problem
discussed in Section II-A is a deconvolution problem. Pre-
dictive deconvolution refers to the case in which the output

¥ is assumed to be a delayed impulse such that

M-1
D fixe 1 =08, g4 (24)
=0

The unknown filter coefficients f, can be pursued in a manner
analgous to the inverse filter approach by assuming the input
to be represented as an all-pole model. However, we prefer
to show that the filter coefficients can also be determined
by interpreting the problem as a prediction problem. It is in
this sense that the term predictive deconvolution is used [7].

Introduce the change of variables ¢+ — a + 1 = f§ in (24).
The resulting equation is

M-1
Y fiXpea_r_y =0bg (25)
7=0 ’

Next, assume the filter coefficients to be given by

a—1 2eros

(—llot Ov -y 0,11,—!12, "‘,"GM—l)» (26)

The upper limit on the summation is now givenby M + a — 2.
Equation (25) can now be written as

M+a-2
Xtra—g t E f¥tea-r-1
7=1
M-1
=Xtra-1 T arXy_ g
=1
=05‘. (27)

If the estimate of x,44_ is assumed to be given by X,.q.1,
then

M-1
Xreqo) = 2 ArXe_v (28)
=1

and 08, can be interpreted as the error of the estimate.

If the total squared error is minimized, as was done for the
linear prediction approach in Section II-B, a set of equations
is obtained for the filter coefficients. When a = 1, these equa-
tions reduce to the same equations as were obtained in (23).

D. Recursive Filter Design

Recursive filters are often used in digital filter design [8]-
{12]. With respect to Fig. 1, the spectral estimation problem
is now posed in the following manner. Assume the filter in-
put is the impulse §,. Let the filter impulse response be de-
termined so as to approximate the data sequence in a mini-
mum mean squared error sense. If x, is the input to the filter
and . is the output, then they are related by

M-1 L-1
2 G Ye_x = 2 byxs_y.
k=0 r=0

Application of the z-transform to both sides yields
M-1

L-1
Y ez *Ye)= Y b2 X()

k=0 r=0

T
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or
L-1
b,2™"
)= % = Ef%))- (29)
"Zq)akz k

Therefore, a tecursive filter has a transfer function which
is expressed as a ratio of two polynomials of the z-transform
vaniable. The objective here is to synthesize the filter from the
given impulse response of the system. It is important to note
that, unlike the previous three types of filters, this is not an
all-pole filter but a pole-zero model. In other words, given
some desired filter operator D(z) (which is the transfer func-
tion of a desired system having the impulse response d,),
we require the polynomials A(z) and B(z) of the filter

B(:
F(:)=—(—)

A@2)

such that

(30)

F(z)y=D()=dy+dyz" " +dyz7 2+ a5,
a3n

A technique for determining A(z) and B(z) is outlined
next.

A@)=1+ayz27 4a27 2+ dapy_ 27 M 32)
and
B(z)=bg+byz ' 4 byz 24 +b, 271! (33)

where Af and L are arbitrary numbers which fix the number of
poles and zeros, respectively, for the filter. Also, divide B(z)
by A(z) so as to obtain the infinite series

Fey=fo+fiz7 +fz7 % +
Since F(2)A(z) = B(z), it follows that

F@)Y{1 +ay27  +ay272 4 4 gy 7M1}
=by+byz ! 4byrm 4t by 27l

Since multiplication of z-transforms is equivalent to convolu-
tion of the discrete time series, the series of b, coefficients
is equal to the convolution of the f, coefficients with the a,
coefficients. Or, equivalently,

M-
b, =

j=0

“jft-l-

By assumption, ag = 1. Therefore,
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As 8, = 0 fort > L (from (33)), one may write
M-
fo=— 2 ajft;, fort>L. (34)
i=1

By assuming the approximation in (31) is valid, the coef-
ficients f; approximate the coefficients d, for 1 > L. Equa-
tion (34) may then be approximated by

M~1
dy=— 3 ajd,j, fort=L+1 L+2~ K—1
=1

(35)
The error in (35) is given by
M-
er=di+ 2 aid,_,
i=1
M-
= E g;d,_;,sinceay = 1,
=0
forte=L+1,L+2, K—~1. (36)

The a; coefficients are chosen in such a way that the mean-
squared error is minimized. In particular,

PR )

=L+ j=0

(37)

is minimized. By differentiating / of (37) with respect to
a; and equating the derivatives to zero, a set of simultaneous
equations is obtained. They are given by

M-1 K1
2 “f[ > dr—idr~k] =0

j=0 t=L+)

fork=1,2, - M—1. (38)
For a realizable filter the numerator polynomial is generally

one degree lower than the denominator polynomial (if the
poles are simple). Thus

L+1=M.

Hence, (38) reduces to

M-1 [K-=t
> "i[z dr-idv—k] =0
o LeM

which is equivalent to the covariance equations as given by
(10). The right side of (10) is zero because

(39

K -1

Di= EAIS‘_I.=0‘ for"=l,2’...'M_.l'

The poles for the filter are then obtained by the solution of
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the polynomual equation

It was shown previously that the inverse filter, assuming an
all-pole model for the signal spectrum, is also equivalent to
(10). We conclude, therefore, that the poles for an all-pole
model correspond to the identical set of poles for a pole-zero
model for the same order filter.

Next the residues at the poles (or equivalently, the numera-
tor polynomial) can be obtained by minimizing the mean-
squared error given by ,{f, — d,}2.

It is interesting to note that when the numerator polynomial
is realized directly in the form presented in (33), the problem
reduces to the case of the Pade approximation {13]. Mathe-
matically, Padé approximation results in an approximation of
D(z) by F(z)such that the seminorm

1D(z) = F(z))) = ID(1) = F() | + | D' (1) = FI (1)
¥ +‘D1,¢,H—l(l)_F\L¢,M—l(])' (40)

is made zero. Here D"(l) represent the kth derivative of D(z)
evaluated on the unit circle.

E. Kalman Filter Theary

Underlying Wiener filter design is the so-called Wiener-
Hopf integral equation, its solution through spectral factoriza-
tion, and the practical problem of synthesizing the theoreti-
cally optimal filter from its impulse response. The normal
Wiener filter is derived from the Wiener-Hopf equationand.in
general, this equation can be solved only in the steady state,
i.e.. when the observation interval is semi-infinite. The contri-
bution of Kalman was recognition of the fact that the integral
equation could be converted into a nonlinear differential equa-
tion whose snlution contains all the necessary information for
design of the optimal filter. The problem of spectral factoriza-
tion in the Wiener filter is analagous to the requirement for
solving M{M + 1)/2 coupled nonlinear algebraic equations in
the 3M-order Kalman filter, These equations can be solved
numerically for transient type problems, where data is avail-
able only for a finite interval. This, in general, results in the
Kalman filters being time variant. However, in the steady-
state the Kalman fiiter reduces to the time invariant Wiener
filter (14]. The presentation by Sorensen {15] expresses the
results of Kalman filter theory in a way that makes this com-
parison easier.

The problem involves estimating a signal {5, }, from meas-
ured data {dg dy, . dg _(}. If the estimate is computed as
a linear combination of the d,,, then

M1
fn= O A, (an
i=0

The M coefficients A; are chosen in such a way that the mean-
squared error,

1=E[(sp = $,) (sn — $0)1, (42)

is minimized. Here T denotes the transpose of the row vector
(sn - 8,). This criterion is satisfied when the error in the

estimate s, is orthogonal to the measured data, or

El(sn —$,)4,7] =0, fori=0,1, M—1. (43)

Expressed in a different way
M—1 . )
E(snd,T] = X, A£[didTV.  fori=01 - M~1
i=0

(44)

However, the matrix inversion that is required becomes com-
putationally impractical when M is large. Wiener and
Kolmogoroff assumed an infinite amount of data ¢that is,
the lower limit of the summation is oo rather than zero).
Equation (43) is then the discrete form of the Wiener-Hopf
equation which was solved usﬁg spectral factorization. .

The basic difference between Wiener-f(olmogoroff theory
and the Kalman filter theory is how equation (44) is solved.
In 1955, J. W. Follin suggested a recursive approach to soive
(44) It is clear [see 15, p. 65] that Follin's work provided a
direct stimulus for the work of Richard Bucy. which led to
his subsequent collaboration with Kalman in the total de-
velopment of the *‘staté space” approach for obtaining the
filter equations.

F. Summary

As outlined above, all forms of the digital Wiener filter
lead either to the covariance or the autocorrelation equations.
[t is also interesting that the same set of poles is obtained
whether one models the signal as an all-pole model or as 2
pole-zero mode)..

1L STOCHASTIC METHODS APPLIED TO
SYSTEM IDENTIFICATION

Three diffeyen‘t stochastic methods used in spectral estima-
tion are presented in this section. They are maximum likelihood
estimation, minimum predictor error variance estimation, and
maximum entropy spectral analysis. All three models are con-
sidered as all-polé models. Thesé methods have no relation-
ship with discrete Wiener filtering theory. The methods
presented in this section start with completely different as-
sumptions but finally yield the identical set of either co-
variance or autocorrelation equations which characterize the
system to be identified from the measured impulse response.

In these methods it is assumed that the data samples are
part of a random process. The problem is to choose the
parameters of the system impulse response so as to make the
probability of occurence of the actual observation most
likely. In other words, the system parameters are chosen in
such a way that the probability density function defining the
parameters is raxinized.

A. Maximum Likclihood Estimation Theory

In this approaca the measured impulse response of the
system is considered as a segment of a random process. It is
further assumed that the impulse response can be generated
by passing an uncorrelated noise sequence {e,} through an
all-pole modet of the form

| I
—=m————  withfy = 1. (45)
Fiz) M By
fiz
=0

— r— :
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Next the random process {e,} is assumed to be Gaussian
with zero mean and variance g,2. Thus,

E{e;}=0 and E{eie,}=6i,0y2. (46)

As the measured impulse response x,, t = 0,1, =, Ak - 1
has been assumed to be generated by passing the noise se-
quence {e,} through the all-pole model, it follows that

M-

le,_,‘r:er. 47)
=0

From (46) and (47) it is clear that the sequence x, is Gaussian
with zero mean and a cross correlation defined by

E[XjI}] =g,-~,-_ (48)

This correlation sequence g;_; would then be a function of
the system parameters f,. i = 0.1, M — 1 and O‘,z_ Since
x, is Gaussian, a Gaussian multivanate probability density
function is defined for the sequence of random variables
Xg, Xy, ", Xx 1. The maximum likelihood theory assumes
that the parameter values which make the measured observa-
tion of the impulse response most likely are the same values
which maximize the joint probability density function of
x;,i=0,1, - K — 1. This can be achieved by differentiating
the density function with each of the unknown variables,
f1.f2. = far- and 0.2 and then setting the first partial de-
rivative equal to zero. The solutions of the set of equations
then yield the values for the unknowr parameters. Even
though the procedure is ¢ nceptually simple, the set of equa-
tions becomes extremely nonlinear for M greater than 2 and
no exact solution for this problem exists {2].

However_ {takura and Saito [16]. [17] solved the maxi-
mum likelihood problem by making some additional assump-
tions. First, the number of data points K is made much greater
than M. the order of the filter (i.e.. K > M). Second, the joint
probability density function for the sequence xg. xy. x5, -,
xx _ is approximated by

pl{xg.xy, . xx _1} = [2170,,2] K712 exp [—a/:o,z] 49)

where
K —1+M | M-} 2
a= E E/ixl—i . (50)
=0 i=0

It is interesting to note that a has the identical form of the
error defined by the autocorrelation equations in linear
prediction (see (22)).

It has been shown {16], [17]) that the results obtained
for the unknown filter coefficients f; are identical to (13)
which utilizes the autocorrelation equations.

The corresponding equations for the covariance method
are obtained by defining a conditional density function for
the probability density. This is achieved by treating the M
data points xq, x,, =, xp ; 8s a set of deterministic initial
conditions and the remaining K -~ M data points as a set of
random variables, Under the above assumptions, the con-
ditional probability density function is approximated as
7). 121

PACm. xpmay. 3k ) (xg.xy . xpy 1))

=(21ro,1)“°‘s(x"M)exp[—u/20,2] s

where

K_1[M 2
OZE fixe (32}
[}

=ML i

Again it is clear that a has the same form as the error energy
defined for the covariance equations for the case of linear
prediction (see (22)) Maximization of the cond:tional prob-
ability density function is then achieved by maximizing p,
with respect to the unknown filter coefficients f, and 0,2
The set of equations (see (10)) obtained in this case are
identical to those of the covariance method.

B. Minimum Predictor Error Variance

In this method the data samples are not considered as a
part o1 a Gaussian process. In other words. the method re-
mains the same as before, i.e., the measured impulse response
is generated by passing a noise sequence <e,- thiough an all-
pole model [2] It is assumed that the error sequence is of
zero mean and of variance given by

M M
Ele’] = E FifiElx, ixe_]. (53)

i=0 ;=0
Next the process is assumed to be stationary so that the ex-
pectation in (53) can be ¢xpressed as

E[x,_‘x,_,'] =i (54)

and the error variance as

M M
Ele?] =22 fifjgi_j. (55)

0 /-0

The problem is to determine the filter coefficients so as to
minimize the error variance,

An additional assumption is now made. Specifically, it
is assumed that the process is ergodic so that the ensemble
average £ may be converted to a time average. Hence, the
approximation

1 K -1

gi-i 8 x_ixy_j=Cy (56)

leads to the covariance equation (10) and the approximation

lK—If—iI~l
r=

leads to the autocorrelation equations (13). Hence, this
method yields a set of analysis equations identical to those
for the discrete Wiener filter.

C. Maximum Entropy Spectral Analysis

An important aspect of time series analysis is the computa-
tion of the power spectral density which is pnimarily de-
termined by the second-order statistics. In an actual experi-
ment, the number of data points is always finite. Hence, for
the problem of interest the data length may not be sufficient
to obtain a specified degree of frequency resolution. Also,
given a finite number of K data point-. we can obtain at

S
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most approximations of the K autocorrelation functions
ro. ry. . rx _y. In the previous autocorrelation formula-
tions the data has been assumed to be zero outside the known
interval. In some instances, this may be an unreasonable as-
sumption about the extension of the data beyond the known
interval. The question then arises as to what assumptions
should be made about the data outside the finite sample and
what assumption should be made about their second order
statistics (i.e., the autocorrelation), since they determine
the power spectral density.

Burg proposed an information theory approach to the
problem. He suggested (18] that the most reasonable choice
of the unknown autocorrelations is the one which adds no
information or adds most randomness or maximizes the
entropy. He then proceeded to select the power spectral
density having the maximum entropy of all possible spectra
that agrees with the known values of the autocorrelation
function r,

The information content of a random process is defined
in terms of a quantity called entropy and is mathematically
expressed as

H=— 2, P nP (58)
7

where P, is the probability of the jth event of arandom process.
When the random variable takes on a continuum of values,
the sum in the definition of the entropy is r:placed by an
integral. Since we are dealing with a time series xg, xy, ",
xk _y. the probability is replaced by the joint probability
density function pl(xg, x. , xx _ ). Thus

“In{p(xqg,x,, "~ x¢ -1} dV (59)

where d} is an element of volume in the space spanned by
the random variables. Burg then proceeded to adjoin a hypo-
thetical variable x, to the available estimates of the autocor-
relation function rg, 7y, ry, and so on. We may then consider
the joint probability density available for the K data points
and the adjoined x g as

Plxg, Xy, ", Xk ~ 1. XK ). (60)

This probability density function has an entropy

H'—'*/P(Xovxh“"xx—l'xx)

“in {p(xg.xy, ", xx _ 1, xx )} AV (61)
Burg chose as (60) that probability density function which
has its first K second-order moments as rq, ry, ", Fx_,

and which under the given constraint maximized (61). The
obvious choice for the probability density function in (60)
is Gaussian since according to Shannon and Weaver [19]),
[20] tlie Gaussian distribution results in maximum entropy
under a constant energy constraint. Thus

plxg. xy. " Xk 1, XK )

exp {— % X'[Re] 'x}
12

62
K+1 (62)

2

(2n) det [Ry )

where X is the column vector of the x,, the prime indicates
the transpose, and the matrix {Kx ! is given by

To ryoctt ke %
'y ro X -2 X -1
Rel=]: : R (63)
x -1
’k Y
The entropy can then be expressed as [19], {20]
H=11n {@2neY**! det [Rx ]} (64)

Now rx is to be chosen in such a way that # in (64) is maxi-
mized. Hence the value of rx is the one which maximizes
det [RK ] .

In order for r; to constitute a proper set of autocorrelation
values, the matrix [Rg ] must be positive semi-definite [21].
Moreover, det {Rx | is a quadratic function in rx It follows
that maximizing det [Rx] with respect to rx yields the
value of rx obtained from the solution of the following
equation:

ry o ceeme g
r r -
det] > ! ’k, 1 <o (65)

.
- .
. .

L SR/ N NS

Alternatively, if an all-pole K — 1 order model is chosen,
then from the previous sections we know that the autocor-
relation functions for this problem are related by the X
unknowns f; asr; = r_; and

K
r+ 2 Stk =0, forj
k=1

il
o
e

(66)

This is identical to (23), for fo = 1. The set of K equations
in K — 1 unknowns in (66) indeed has a solution which is
found by solving the first K — 1 equations. The last equa-
tion can be seen to be a linear combination of the first K - 1
equations. In fact, the determinant of the above set of equa-
tions in (66) is identical to that of (65). In this sense, (66)
is consistent with the maximum entropy method.

Thus it is shown that the extrapolated autocorrelation
functions coincide with those functions which would have
been predicted by the modet of equation (66). Hence this
procedure is equivalent to the all-pole model described by
the maximum likelihood estimation [20]-[23].

Since so far as the second-order statistics are concemned,
the sampled data x, may be modeled arbitrarily closely by
an all-pole model of order K, we may view the above process
as an autoregressive process with input (white noise) and
output (x,) where the filter is described by the transfer func-
tion [22]).{23):

1
H@)y= —F—F 67N
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Also

So(N) = SANIHGW)I? (68)

where §o(/) and Si(f) are the output and input power spectral
density  respectively. The power spectral density of the proc-
ess x; has been shown to be | 20] - 23]

SAN)
Solf) = —5— . (69)
1+ E fiexp [—j2nfidr)
i=1

where S;(/) is the power spectrum of the white noise :lhvmg
the filter.

Thus, for M = K. identical analysis equations are obtained
by the maximum entropy spectral analysis and by the maxi-
mum hkelihood estimation theory It has also been shown else-
where that this 1s indeed so [20] -1 23]).

IV. PRONY'S ALGORITHM AND ITS EXTENSIONS

In the previous two sections the system identification
problem was treated as a stochastic problem. The measured
impulse response was characterized by a random process. In
this section a different approach is taken in that the noise
contaminated impulse response is processed as though it
were a deterministic process The problem is to determine
the poles and residues which characterize the measured im-
pulse response.

Historically, Prony was the first to make an attempt at
fitting experimental data with complex exponentials. In
1795 Prony postulated that the basic laws dealing with gas
expansion can be expressed as a sum of exponentials. He
demonstrated that, given 2M data points, it is possible to
fit exactly M exponentials to the data at those points. Prony
must have experienced great frustration when he applied
his method due to the extreme sensitivity of the exponent
to the accuracy of the measured data. Accuracy requirements
have been investigated by Lanczos [24]. However, in some
cases of EMP problems, the exponentials encountered are
complex and they are approximately at harmonic frequencies.
Moreover, the real parts of the complex exponentials are
much smaller than the imaginary parts. Hence, the damped
exponentials in the case of electromagnetic pulse problems
are more closely orthogonal and, thereby, create fewer prob-
lems with regard to accuracy than is evidenced in the example
by Lanczos. The contamination of data by noise creates
grave problems for extracting M correct exponents from 2M
data points. Hence, more data are necessary and a semi-least
squares approach to Prony's method is taken. The details
of Prony’s method are well known [25]~]31) and are omitted
in this paper. The final equations that ultimately result are
the same as either the autocorrelation or covariance equations
of linear prediction. McDonough [13] and Van Blaricum
[25], in their Ph.D. dissertations, and Markel and Gray (2]
used the covariance equations (10). Thus, the semi-least
squares Prony’s method is equivalent to a M-length Wiener
prediction filter. The term semi-least squares has been ap-
plied because the true least squares problemn would give rise
to a set of coupled nonlinear equations {26]. The true least
squares problem has been defined as in [28).

Prony’s method has found wide applications in finding
poles and residues of transient waveforms through the works
of Miller, Brittingham, and Willows [27].

V. CONCLUSION

We have demonstrated that identical analysis equations
can be obtained by several different techniques even though
they start with formulations based on different assumpt: s

However a major objection with all these technmigues 1
that there seems to be no compelling reason for the chojee ot
ag = 1 rather than ay , = I, or for that matter the choice
of any a, to be umty Yet each of these chowces leads to g
different set of exponents [13). As an example consider the
signal exp [-0.00035¢) cos (0.25r) For this signal we have
$32 = exp [-000035 * j0.25] = 0.97 = ;0.25 Let the
length of data points be K = 5 and the order of the filter
M =12 Then {x,}isthe sequence <1 00,097 0 &8 073 054
for the sequence ¢ = 0, §, 2, 3, 4' To this we add 1 percent
zero-mean additive noise to obtain the sequence {x "%,
{101. 0.96, 0.89. 0.72. 0 54- Using the covanance method,
5y 4 for this signal are obtained from the two roots of the
polynomial equation u(,s: + a5 +a; = 0 If one assumes
ag = 1, then the computed 5, , = 087 ;.23 1f one assumes
ay, = 1, then the computed 5, ; = 0.98 ;22 If one assumes
a; = 1. then the computeds; , = 11214

The above example thus ilustrates the dependence of the
exponents on the choice of g, to be unity.
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Alterpazively, 1if an all pole K-l order model is chosen, then
from the previous sections we know that the autocorrelation funccioas

for this problem are related bv the K unknowns f{ as r.= r _ and

= 0, for i = 2,2, ..., K. .22
This is identical to (2.23), fer fo = 1. The set of K equations in
K-l unknowns in (3.22) indeed has a solution which is found by solving
the first K-1 equatioms. The last equation can be seen to be a

linear combination of the first K-l equatioms. 1In fact, the determinant

of the above set of equations in (3.22) is identical tec that of (3.21).
In this sense, (3.22) is consistent with the maximum entropy method.
Thus it is shown that the extrapolated autocorrelation functions
coincide with those functions which would have been predicted bv the
model of equation (3.22). Hence this procedure is equivalent to the
all-pole model described by the maximum likelihood estimation [20-23].
Since so far as the second order statistics are concerned, the
sampled data xt may be modeled arbitrarily closely by an all-pole
model of order K, we may view the above process as an autoregressive
’ process with input (white noise) and output (xt) where the filter is

described by the transfer fumection {22, 23]

H(z) = —5y . (3.23)
i

1+ £.2°
izl 1

22 D.E. Smylie, G.K.C. Clarke and T.J. Ulrych, "Analysis of Irregu-
larities in the Earth's Rotation,” Methods in Computational Physics,
Vol. 13, New York: Academic Press, 1973, pp. 391-430.

23 S.L. Marple, "Conventional Fourier, Autoregressive and Spectral ‘
Methods of Spectral Amalysis," Ph.D. Dissertation, Stanford University, i

Palo Alto, Califormia, 1976.
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Also

S,(f) = si<f)aﬂ(jw);2 (3.24)
where So(f) and Si(f) are the output and input power spectral denmsity,
respectively. The power spectral demsity of the process x: has been

shown to be [20-23]

Si(f)
So(f) = ~7=1 (3.25)

'1 + ] £, exp[-j2mfiac) 2
1=1 1

where Si(f) is the power spectrum of the white noise driving the
filter.

Thus, for M = K, identical analysis equations are obtained by
the maximum entropy spectral analysis and by the maximum likelihood
estimation theory. It h§s also been shown elsewhere that this is

indeed so [20-23].
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IV. PRONY'S ALGORITHM AND ITS EXTENSIONS

In the previous two sections the system identification problem
was treated as a stochastic problem. The measured impulse response
was characterized by a random process. In this section a different

approach is taken in that the noise contaminated impulse response

is processed as though it was a determimistic process. The problem
is to determine the poles and residues which characterize the measured
impulse response.

Bistorically, Prony was the first to make an attempt at fitting
experimental data with complex expomentials. In 1795 Prony postu-
lated that the basic laws dealing with gas expansion can be ex-
pressed as a sum of exponentials. He demonstrated that, givem 2M
data points, it is possible to fit exactly M expomnentials to the
data at those points. Prony must have experienced grest frustracior
when he applied his method due to the extreme sensitivity of the
exponent to the accuracy of the measured data. Accuracy recuiremeuts
have been investigated by Lanczos [24]. However, in scme cases of
EMP problems the expomentials encountered are complex and zhev are
approximately at harmonic frequencies. Moreover, the real parcs of
the complex expounentials are much smaller than the imaginary parts.
Hence, the damped exponentials in the case of EMP problems are more closely

orthogonal and, thereby, create fewer problems with regard to accuracy

24 C. lLanczos, Functional Analysis. Englewood Cliffs, N.J.:
Prentice Hall, 1956, pp. 272-279,
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than is evidenced in the example bv Lanczos. The contamination of

data by noise creates grave problems for extracting M correct expoments
from 2M data points. Hence, more dat. are necessary and a semi-least
squares approach to Prony's method is taken. The details of Prony's
method are well known and are omitted in this report. The final
equations that ultimately result are the same as either the auto-

correlation or covariance equations of linea- prediction. McDonough

{13} and Van Blaricum [25], in their Ph.D. dissertations, and Markel
and Gray [2] used the covariance equations (2.10). Thus, the semi-
lease squares Prony's method is egquivalent to a M-length Wiener pre-
diction filter. The term semi-least squares has been applied because
the true least squares problem would give rise to a set of coupled
nonlinear equations [26]. The true least squares problem has been

defined as in [26].

4,1 Various Extensions to Prony's Method

The reason for pretenting this section is to show that for a
particular extension to Prony's methiod a procedure similar to the
pencil-of-functions method is posed in a Hilbert space. Yet each of
them yields a different answer. Hence, the way in which a problem

is developed is extremely important.

25 M. Van Blaricum and R. Mittra,"Techniques for Extracting the
Complex Resonances of a System directly from its Transient
Response; Interaction Note 301, December 1975. (Also in IEZEE
Trans. on Antennas and Propagation, Vol. AP-23, No. 6, Nov. 1975.)

26 R.N., McDonough and W.H. Huggins,"Best Least~Squares Representation
of Signals by Expouentials,” IEEE Trans. AC~13, No. &4, pp. 405~

412, August 1968.
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Tuttle [27] extended the Mth order difference equation encouncered
in Prony's method to an M th order diffsrential equation but then con-
fined attention to the single poimt t = 0, Kautz [28) then extended
the technique to the semi-infinite interval [0,~). If a continuous
function x, is a sum of complex exponentials, then it can be shown
that the various derivatives of X, satisfy a constant coefficient

homogeneous differenrial equation

M@
] ax "’ =0 with a_ =1 (4.1)
i=0 1"t o

E
where xé‘) is the i th derivative with respect to t of .. But if the
data are noisy, then the right-hand side of the above equation is

no longer zero. We write

M-1 (1)
aix = et (4.2)
1= -t

where et is the error term. Kautz then proceeded to solve for {gi}

by trying to reduce the error

L= fe, 1 ar 4.3)
J
0

The exponents{si}used for ficting x, are then obtained from the zeros

of the characteristic equation

7 a sia0 . (6.4)

27 D.F, Tuttle, "Network Synthesis for Prescribed Transient Respcnse,h
D.Sc. Dissertation, M.I.T., 1948,

28 W.E. Kautz, "Approximation over a Semi-infinite Interval," M.S.
Thesis, M.I.T., 1948.
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The expansion of xt as a linear combination of its derivatives
is inappropriate if the data xt are not everywhere smooth (for example

when it is sampled). Carr [29] extended this technique by integration

of the differential equatiom (4.1) k times. This leads to

M=-1 .
(1-k) - = 5.5 %
iZO aixt 0 with a 1 (4.3 é

where

Py

t t
-1 1
i-k (1)
( ) . j 5 f % de) dt, ... dr, de(4.6)
L o L]

[Note: The lower limit of the integral is += and it is assumed hat

xéi) (+2) = 0 for 1 = 0,1, ..., M-1.] (4.7)

Again, if the data are noisy, the coefficients {ai} are obtained from

the minimization of the function

f [Z (1“‘)]2&: (4.8)
) 1m0

are obtained as before from the solution of the

{
F The exponents S5

polynomial equation (4.4).
It is interesting to observe that this approach is very similar

to the pencil-of-function method as discussed in section VI. For

k = M-1, it is obvious that the data X, is an element of a Hilbert

space spanned by the data and its successive integrals [30].

e -

29 J.W, Carr, "An Analytic Investigation of Transient Synthesis by
Exponentials,"”" M.S. thesis, M.I.T., 1949,

30 M.J. Narasimha et al, "A Hilbert Space Approach to Linear Predic-
tive Analysis of Speech Signals, Tech. Report 3606-10, Radioscience
Lab, Stanford Electromics Lab, Stanford University, Califormia, 1974,
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The solution to the svstem identificarion problem by any difference

equation leads to a regularized ill-posed problem which has peen

regularized in terms of how close the actual and the measured responses

are instead of the natural frequencies of the waveform. This is described

in detail in the next section.
A major objection with all these techniques is that there seems )

to be no compelling reasonm for the choice of a, = 1l rather than ey ™ 1,

or for that matter the choice of any a, to be unity. Yet each of

these choices leads to a different set of exponments (13]. As arn ]

example conmsider the signal exp [- N0035t] cos (0.25t). For this i

signal we have s exp [-.00035 + j0.25] = 0.97 + 30.25. Let

1,2
the length of data points be K = 5 and the order of the filter M = 2,

Then {xt} is the sequence {1.00, 0.97, 0.88, 0.73, 0.54} for the sequence
{t =0, 1, 2, 3, 4}. To this we add 1% zero mean additive noise to
obtain the sequence {xf°ise} - {1.01, 0.96, 0.89, 0.72, 0.54}. The

$; 2 for this signal are obtained from the two Toots of the polynomial

equation a052 + a; s + a, = 0. 1If one assumes a, = 1, then the

computed S) o " 0.87 + §.23. If one assumes a; = l, then the computed
;]

s = 0.98 + j.22. £ one assumes a, = 1, then the computed

1,2

5, , = 1.1+ 1.14

1,
The above example thus illustrates the dependence of the expoments

on the choice of a; to be unity.
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v. LL~-POSED AND WELL-POSED PROBLEMS OF
SYSTEM IDENTIFICATION

The system identification problem is almost alwavs ill-posed. (This
is reflecred by the fact that two impulse responses with drastically
different natural frequencies may yield almost identical outputs for the
same input.) An ill-posed problem can be regularized however bv imposing
additional constraints on the system.

We begin our discussion by defining the concept of a well-posed
problem along the lines of Tykhonov [31-32] and Lavrentiev [33]. In
particular, consider the operator equation

Xh=y (5.1)
where the operator X maps an element in the space B to an element ia the
space Y. The problem of solving (5.1) for h given X and v is said to be
well~-posed if the following conditions are satisfied:

1) The solution to (5.1) exists for each element in the space Y.

2) The solutiom to (5.1) is unique in H.

3) Small perturbations in y result in small perturbations in the solution
to (5.1) without the need to impose additional constraints.

If any of these conditioms is violated, the problem is said to be

31 A.N. Tykhonov, "On the Solution of Incorrectly Formulated Problems
and the Regularization Methods," Soviet Mathematics, 4, 1963 »p .1035~103

32 A.N. Tykhonov, "Regularization of Incorrectly Posed Problems,"
Soviet Mathematics, 4, 1963, pp. 1624-1627.

33 M.M. Lavrentiev,'Some Improperly Posed Problems of Mathematical
Physics," Springer-Verlag Tracts in Natural Philosophy, Vol. II,
Springer~Verlay, Berlin, 1967.
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ill-posed. It is importaantr to realize that uncertainty in data due to
measurement error mav cause a problem to become ill-posed. Specificallyv,
this results when a noisy measurement of y produces a waveform which does
not belong to the space Y.

When (5.1) was introduced, it was assumed that the operator X was
known exactly. When there is uncertainty in X, in addition to uncertainty
in y, the problem is said to be well-posed in the wide-sense provided
condition (3) is generalized to require that the solution h depends
continuously on both X and y (i.e. small perturbations in both X and v
should produce only small perturbations in h). For example, in linear
least-squares problems where (5.1) is a matrix equation in a finite

dimensional space, the solution is given by

b= (X T X y. (5.2)
Since the generalized inverse of a matrix does not depend continuously
on its matrix eiements, the problem is ill-posed in the wide sense.
Interestingly enough, this problem is well-posed in the
narrow sense. If the determinant of the matrix is very small or
the condition number (||X || HX-lII) is very large, then the problem
is numerically ill-conditioned [34]. Another example of an ill-
posed problem is the integral equation of the first kind.

Hadamard introduced the notion of a well-posed (correct, properly
posed) problem at the beginning of this century when he studied the
Cauchy problem in comnection with the solution of Laplace's equatiom
[32]. He observed that the solution did not depend continuously on the

data. On the basis of this, Hadamard concluded that something was

34 M.Z. Nashed, "Some Aspects of Regulariaztion and Approximation
Solutions of Ill-Posed Operator Equations,”" Proceedings of the
1972 Armyv Numerical Analysis Conference, Pp. 163-181.
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wrong with the problem formulation because solutions exhibiring such
cype of disconzinuous dependence do not correspond to phvsical svstems,
i.e. they do not arise in the study of natural phenomena. Other mathe-
maticians of tha:c time, such as Petrovsky, also reached the same
conclusioun.

Mathematicians, such as Hadamard and Perrovsky, reasoned that the
mathematical models associated with the il1l1~posed problems must be
incorrect. However, today it is recognized that their definition of

a8 well~posed problem is lacking. In fact, using that definition, many

"inverse" problems of mathematical physics are ill-posed. This includes
most radiation and scattering problems in antemna rtheory.

In order to avoid difficulties associated with the original defimicioxm,
Tykhonov suggested that the three conditions be restated differeatly. In

addition to the metTic spaces B and Y and the operator X, let there be

given some closed set HC'C,H. We call the problem for the soclution

of (5.1) properly posed according to Tvkhomov if the following conditions

are fulfilled:

1) 1t is required that the solution h exists for some class of data
y and belongs to the given set Ec, he Bc'

2) The solution is unique for the class of solutions belonging to HC.

3) Arbitrarily small changes of y which do not carry the solution ourside
the metric space Hc correspond to arbitrarily small changes in the
solution h.

We denote by Hﬁ the image of Hc after application to the space E of

the operator X. Requirement 3) can now be restated in the following

manner, '
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3) The solution of equation (5.1) depends continuously on the righ:i-hand
. . . . - A
side y which is a member of the set H;.
1z HA is a compact set, the fcllowing statement holds. If egquaticr
c
(5.1) satisfies the regquirements 1), 2) of a well-posed problem due to
Tvkhonov, then there exists a Suncziom 2(T) such that {32]
a) a (T) is a continuous nondecreasing function with 2(0) = 0.

b) For amy h,, h, € Ec satisfying the inequality d(Xhl, Xhz) Le,

l’
then d(hl’ h,) <& (¢g)

Thus the requirement o continuous dependence is satisfied i£ 1) and 2)

are satisfied.

We note that, if a problem is properly posed according to
Tykhonov and we replace the metric spaces B and Y by their subspaces -
Hc and Hi, then the problem becomes properly posed in the usual sense. i

The necessizy of exa;ining spaces H, Y together with Hc' Hﬁ is
due to the fact that in real problems the errors committed in the
determination of the right-hand side y, usually lead to ¥ outside of
Hﬁ. The consideration of the problem according to Tykhonov's formulation
gives the possibility of constructing an approximate solution with a
certain guaranteed degree of accuracy in spite of the £fact that an
exact solution of (5.1) with approximate data either does not exist

"

at all or may strongly deviate from the "true" solutiom.

The new set of three conditions may be summarized as follows.

. . -1, :
The f£irst condition guarantees the existense of X in the sense that !
a solution may proceed bv choosing a complete basis from the compact

set Hc in order to project ¥ and Xh (for b ¢ HC) into Hé . The

uniqueness of the solution is guaranteed by condition two. Condizion

' three requires the continuity of the solution in the space HC.
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G.ve; an ili-posed problem, ITvkhonov has regularized
<he problex dy redefining what is zeant bdy an acceptable sciutlorn.
Basicallv, the idea is to make constructive use c¢f the notions
we have with regaré to a pnysical problem by which we derermine
a cercain class of acceprable answers having more-or-iess
acceptable magritudes and degrees of smoothness. Regularization of an
ill-posed probler need not be confined to the method of Tykhomnov.
Various schemes proposed in the literature have involved one or more
of the following concepts: [34]

a) a change in the definition of a2 solution

b) a change in the space to which the solution belongs

¢) a change of the operator X

d) the introduction of regularizing operators

e) probabilistic methods or well-posed stochastic exzensions
of ill-posed problems.

Note that it mav be vossible to regularize an illi-posed problem
with respect to one set of variables but not another. Thus, the choice
of piecewise triangles or piecewise sine functions as a basis for
expanding the current distribution on an antenna by the method of
moments results in a regularized ill-posed problem with respect to the
current distribution on the antemna structure. However, the problenm
is not regularized with respect to charge because the charge distribution
obtained in this manner is discontinuous. As a point of interest, the
method of moments regularizes an ill-posed scattering or a radiatiom
problem by the introduction of zoncepts (b) and (c).

In a system identification problem, the objective is to £ind the
impulse respomse h(t) of a linear time-invariant system when the imput
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x {2 and the outpu:r data v.T) TO a svstem are known. The input-outpul

relationsnip for a causal svster is describecd by
r: g
v(t) = . x(t=7)h(7)dT = Xh 3.3
0
In prorilems arising in svstexm idemtificazion we are usuallv certain

e Wiy

0of cthe existence of the functionm h(t) that appears in the integrand ic
equation (5.3). Its uniqueness can also be guaranteed. However even 1f the
solution exists and is unique, eq. (5.3) can have for a specific X a
peculiaricy which makes cthe problem an incorrectly pesed one. This

peculiarity arises from the ''smoothing" action of the convoluzion operator X.

This is illustrated with the following example.

Consider two continuous functions hl(t) = h(t) and h,(t) = h,(t) + C sin wt.

It is clear that even for a very large value of C, we can choose

sufficiently a large value of w such that the difference between

yl - Xhl and yz = Xh2 is less in absolute value thap any previously given
(arbitrarily small) number €, i.e the operator X '"smoothes" out a very
intense, but adequately high-frequency compoment, to an extremely small
level. The presence of disturbances accompanying the fumction v(t)

makes the problem ill-posed. For instance, assume that experimental
conditions permit agreement of the measurement d(t) with the measured
function y(t) only to within an error §

max
d(t) - v(¢ < &,
0<t<w ) ¥(e) hg (5.4)
It 1is easy to see that if the operator X of (5.3) has the swmoothing action

we have described, then we can always £ind two fumctions hl(t) and h,(t)

- Xhz both satisfy (5.4). Accordingly,

whose transforms vy = Xh1 and Y,

| there are ar least two different functioms that satisfy (5.3) with d(t) |
| ;
|
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Beasurec OV experimen:t Ic wiinin an error . In fact, there exists an
imEime - . A< An &, - S 1 1 £ =

~RIinite set I guch funciions, whose mexbers may differ Zrom each other

OF a8 Tulh as we T.ease. It is in this situatior that the "incorrectness"

<

3I tne Srosles Yarmulaziss .. actualle lies.
~% antenza °Tol.emS. Ine situation is not that severe due to the

3ign.7 Deakec Lave I tne zernel exp (-jkr)/r.

Suppose o ‘e Dmasurecd Zunctior is d(t) = v(r) + e(t) where e(t) is
the acise 57 the svszem. The noise is assumed to be a stationary

Tandom pTocess wiin rerc mean and correlation function o(1).
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The solution zf{ the problex

vy

-

x(¢-T) &(T) & T (5.5)

is formally obtained in terms of Fourier transforms of the output and

input bv means of the expressiorn
Lot jwl
Jw
-0 = ()

af?

(5.6)

where the symbol ~ denotes the Fourier tramsform of the corresponding
function. Of interest is the variance of the function h(t) when instead

of y we use d = y + e in (5.5). The variance is derived in [35] as

” L ad
6"(&) = L ¢<u> e -
.2‘“' 2 \;Lﬁa)\l (5-/)

where @ (w) is the power spectrum of the noise. Note for finite enmergy

signals that

| X)) —>o v |2 2. (5.8)

In order that the variance of the solution remains finite, the power

spectrum P(W)of the noise must fall off sufficiently rapidly as |o]—=>=.

35 V.F. Turchin et al, "The Use of Mathematical Statistics Methods

in the Solution of Incorrectly Posed Problems,” Soviet Physics
Uspekli 19, 1971, pp. 681-703,
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This imposes severe restrictions on the class of processes e(t) that are
admissible as noise. Commonly, these conditions are not satisfied; since
the noise is usually assumed to contain a background 'white noise' component.
Consequently as jw|-»*% the spectrum ZCQ) approaches a nonzero constant

limit. Then the variance in (5.7) is infinite. Hence.unsatisfactory
sol;tions are obtained when the experimentally found function d(t) is
substituted for y(t) in (5.5). The source of the difficulty 1s obvious:

the high frequency components of d(t), which arise f-om the presence

of noise and which are not present in the true functiom v(t), produce

large oscillations in the solution.

It is useful to examine the situation needed for (5.5) to be a
correctly posed problem in the presence of white noise. Im particular,
if ?Z(o) is a rationmal function, the numerator polynomial must be of
higher degree than the denominator polynomial. This requires in x(t)
the presence of singularity functions such as doublets, triplets, etc.,
all of which have infinite energy.

The classical Wiemer problem is also ill-posed. The‘solucion is
determined from the orthogonmality principle, which states that the linear
minimon mean square error estimator is chosen to make the error orthogomal
to the data. However, the solution is not unique because, in general,
other estimators which are also orthogomal to the data can be added to
the solution without upsetting the orthogonality condition.

Maximum likelihood, minimum variance, and maximum entropy spectral

estimation regularize what would otherwise be an ill-posed problem by using

statistical techniques to estimate the solution as opposed to solving for




an exact solution. The main feature of a statistical regularization scheme
is that an estimation "rule” is prescribed for the observed data. Given the
noisy data, one simply applies the estimation '"rule” in order to achieve
the estimate. The qualiry of the estimate depends on the goodness of the
estimation rule chosen as well as the accuracy of the a priori kmowledge
concerning the statistics of the underlying process. This leads to the
replacement of the exact solution of the equation by an approximate
"regularized" solution. Different strategies, both optimal and suboptimal,
mey be suitable for different problems. However, they all result in a
statistical regularization of the problem and, in general, yield estimates
of varying quality.

One disadvantage of the statistical regularization approach is that
considerable a priori information is usually needed if a particular
strategy is to be successfully applied. Nevertheless, the following
advantages hold:

First, the probabilistic approach is the natural way to describe
measurement noise which is often responsible for a problem becoming ill-
byosed.

Second, the probabilistic method allows more complete use of previous
experience, by including it in the a priori distributions.

Third, when there is no such experience, the probabilistic method
still allows one to proceed by making use of extremely weak assumptions
about the unknown processes.

The various techniques discussed in section III describe various
strategies to regularize in a statistical way the ill-posed svstem

identification problem. ;




The pencil-of-functions regularizes the identification probles by

generating the compact set Hc to which the solution belongs. This is achieved
by introduction of the operator S which integrates a function from e to t.
For a discrete-time system the integral reduces to a sum. The pencil-of-

function method makes use of the simple sequence

k
" { Ay ‘1}
The sequence is indexed on k and ¥, = exp (j27(fi) and {Ai} are the residues.

Application of the operator S on n reduces to
k
sh= { Az /(1.1 )
It follows that {1~ (1~ T, )S]""~ = {0} . It can also be shown that

the operator S maps the space onto itself while preserving the poles of the
sequence. It is because of this factor that the poles and zeros obtained by
this method are extremely stable, reliable, comsistent and accurate.

The vectors which span the compact set Bc to which the pole Ty
belongs are generated by successive applications of the operator
Ll = (l-r )Sl to m . Note that in this operator r, is an unknown

quantity. The r_ 's are obtained from the linear dependence of the spanning

i
vectors of the compact set Hc. The detajiled mathematical derivations may be

obtained in [36].
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VI. PENCIL-OF-FUNCTIONS METHOD

A useful mathematical entity arises by combining two given func-
tions defined on a common interval together with a scalar parameter
as

£(t,A) = Ag(e) + h(e) (6.1)

The entity f is called a pencil of functions where g(t) and h(t) are

parameterized by ). For example, if h(t) is composed of

h(t) = A exp(-st)

t
g} 'L h(t)dt = :sé exp (~-st) [for s > 0]

then the pencil'kg(t) + h(t) can be formed. The pencil of functioms
is linearly depéndent only when )\ = -5, Therefore, the value of A
can be computed from h(t) and its integral using their inner product.
The main result thus concerning the linear dependence of the pencil
sets is that the parameter A satisfy a polynomial equation. The de~
tails of this method may be found in references [36-38]. An

advantage of this technique is the generation of the successive

38 V.K. Jain, "On System Identification and Approximatiom,” Florida
State University, Tallahassee, Eng. Res. Rep., SS-I 1, 1970.

37 V.R. Jain, "Filter Analysis by Use of Pencil of Functions: Part
I & II," 1EEE Trans. on Circuits and Systems, Vol. CAS-21l, Wo. 6,
September 1574.

38 T.K. Sarkar et al, "Suboptimal System Approximation/Identification
with knowm Error,"” Report No., AFWL-TR-77-200 on Contract F33615~
77-C~2059, September 1977.
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integrals of the function. So assuming the function itself is in L2
space, then the set generated by the successive integrals forms a
compact set in L, space. This is how the ill-posed system identifica-

tion problen is regularized by converting the function to L Since

2°
we are interested first in finding the values of A for the pencil, genera-
tion of successive integrals of _he function forces the solution to
belong to the compact set spanned by the integrals. That is why it
has been possible to estimate an error bound on the location of the
poles [36-38].

Another added advantage of formulating the problem this way is
that the effect of conventional filtering can be greatly reduced. This
can be achieved through successively smoothing the fumction by passing
it through a band pass filter with transfer fumctiom, [(as + b)/(cs + d)],
as opposed to pure integration. The integrator is then a special case
of a band pass filter for a = d = 0 and b = ¢ = 1, This can increase the
frequency resolution of the indentification technique.

Moreover, as the poles are obtained from a polynomial equation
whose coefficients form the minors of the Grammian of the pencil of
functions, neise corrections can be done easily, Thus, in order to
make the estimate of the poles unbiased, the entries in the gram-matrix
can be altered in a systematic way to yield an unbiased estimate for
the poles [25,26].

As an example consider the transient response of a conducting
pipe tested at the ATHAMAS-I EMP simulator. The conducting pipe is
10 m long and 1 m in diameter, Hence, the true resonance of the pipe

is expected to be in the neighborhood of 14 MHz. Also, the pipe has
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beern excited in such a way that it is reasonable to expect only odd
harmeonics at the scattered fields. The data which have been measured
are the integral of the E-field and hence is available in terms of a y
voltage. Thus, in addition to the frequencies of the conducting pipe
one should alsoc observe a very dominant low frequency pole. The same
transient data as depicted in Figure 2 {Figure 10 of reference [38]}
is used for analysis. The results for 2 fifth and a seveanth order
system are as follows:

For n = 5, the poles in radians/sec are
9

(=0.0029 + 30,083) x 10 (»13.33 MHz)
(=0.0428 + 30.217) x 10° (=35.20 MEz) {
(=0.0098 ) x 10° (= 1.56 MHz)

. For n = 7, the poles iIn radians/sec are

(=0.0058 ¥ 350.084) x 10° (=13.40 MHz)
(=0.0270 ¥ §0.219) x 10° (=35.10 MHz)
(-0.0270 + 30.550) x 10° (=87.60 MEz)
(-0.0012 ) x 10° (=0.19 MHz)

It is interesting to observe that the real pole due to the in-
tegrator has been obtained. This pole is a very dominant pole as the
data was recorded after having passed through an integrator.
The above results display a dynamic range of approximately 1000:1 for
the values of poles of the conducting pipe.

Next the data were differentiated to get rid of the undesirable
dominant pole of the integrator. The differenriation was done numerically,

For a fourth and a sixth order system the above results have been
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recalculated as follows:

For n = 4, the poles in radians/sec are
9

(~0.0026 + 30.086) x 10 (=13.70 MEHz)

(-0.0480 + 30.235) x 10° (=37.47 MHz)
For n = 6, the poles in radians/sec are

(=0.005 + $0.083) x 10° (=13.23 MHz)

(~0.034 + §0.221) x 10° (=35.59 MHz)

(=0,071 + 30.406) x 10° (=65.9 MEz)

Here 3 good approximation to the poles has been obtained with only
four poles. Also, there seems to be a good agreement in the pole
locations obtained from the original integrated data and the numeri-
cally differentiated data. It is also interesting to observe that
indeed the poles are occurring approximately at odd harmonics of the
fundamental. Hence, the pencil-of-functions method does provide
stable, reliable, consistent and accurate values of poles from noise

contaminated measured responses of electromagnetic systems.

In Figure 3, the true numerically differentiated data is
plotted against the recomstructed response of a sixth order system.
The plot has been normalized to unity amplitude. It is inreresting to
note that there is a close agreement even {n the very early times of

the two waveforms.
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VII. DISCUSSIONS

The previous sections demonstrate that the use of a proper
mathematical model is extremely important ip regularizing an ill-
posed problem. It has also been shown that the pencil-of-functions
differs radically from the other existing schemes of finding poles
and residues of a finite length noise contaminazed record. It is
because of the use of a complerely different regularizing scheme
that analytical error counds on the pole locations are possible.
Tnis is why reliable, consistent, stable and accurate results for
the poles aund residues have been obtained for this method. Thus,
the pencil-of~functions method shows a great promise for the amalysis
of poles and residues from measured transient responses of a

finite~size conducting body in free space.
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